

An ArcGIS-based study of the Sirt Rift Province, Libya

"AN ENCYCLOPEDIA AND INTERACTIVE TOOL-KIT"

Lynx Informations Systems Ltd & DBConsulting

Principal author: David Boote

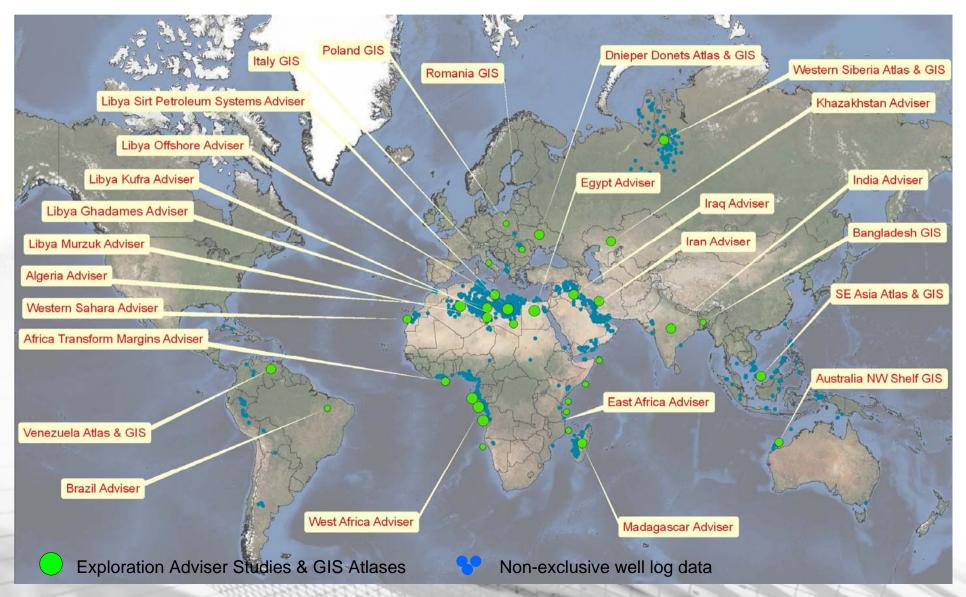
Over 30 years experience in international new venture oil and gas exploration. Twenty five years international new venture exploration with Occidental Oil and Gas Company, variously as Chief Geologist Worldwide Exploration, Regional Manager and Senior Geological Advisor, responsible for basin evaluations, play analysis, prospect generation and appraisals in most parts of the world. Retired from Occidental in 2000 and now active as an independent consultant focused on regional stratigraphic and hydrocarbon petroleum systems analysis.

RECENT PUBLICATIONS/PRESENTATIONS

Boote, D.R.D & C.Machette-Downs, 2009, Extinct, near extinct and active petroleum systems of the East African coastal basins, 8th PESGB-HGS Conference: New concepts for the oldest continent, September 2009, London (oral presentation)

Boote, D.R.D., 2009, Stratigraphic Controls of Petroleum Systems in the Sirt Basin, Libya, AAPG Annual Convention and Exhibition, 7-10th June 2009, Denver, USA (oral presentation)

Boote, D.R.D., A.Dardour, P.F.Green, J.D.Smewing & F.Van Hoeflaken, 2008, Burial and unroofing history of the baseTanezzuft 'hot' Shale source rock, Murzuq Basin, SW Libya: new AFTA constraints from basin margin outcrops. 4th Sedimentary Basins of Libya Symposium: the Geology of Southern Libya, 17-20th November 2008, Tripoli, Libya (in press)


Boote, D.R.D., 2007, The Geological History of the Istria 'Depression', Offshore Romania: Tectonic Controls on Second Order Sequence Architecture. AAPG European Region Energy Conference and Exhibition, 18-21 November 2007, Athens, Greece (oral presentation).

Boote, D.R.D., R. K. Olson & M. H. Reynolds, 2006, Petroleum Systems Analysis of the Sirt Basin, Libya. Geological Society London ~ Petroleum Systems of Saharan Africa Conference, 19-20 April 2006, London (oral presentation

Boote, D.R.D., 2005, Safah Field, Oman: from blue sky exploration concept to mature development. PESGB Carbonate Conference: Middle to Far East Carbonate Reservoirs: Exploration, Development and Exploitation, 15-16th November 2005

Lynx 'Exploration Adviser' ArcGIS projects completed

Preamble

The Sirt Rift Province is a prolific hydrocarbon province with approximately 30 Bbbls proven reserves. Oil and gas accumulations are reservoired in granitic basement, sandstones and carbonates ranging in age from Pre-Cambrian to Oligocene, charged by syn and early post-rift, Triassic and intra-Cretaceous organic rich lacustrine and restricted marine shales. The key factors governing the distribution of hydrocarbons in the Province are described in this regional ArcGIS based synthesis.

The analysis is divided into four modules. These can be linked and combined together interactively, allowing the interpreter to evaluate a broad spectrum of petroleum systems by integrating source facies distribution, generative areas, migration conduits, reservoirs, seals and expulsion/charge timing. The analytic capability of this approach provides a very efficient way to rank and risk plays and play trends on both regional and local scales.

Study Layout

A dynamically-coupled ArcGIS project with accompanying text, figures and tables.

SECTION I: Regional Stratigraphic Architecture

Tectono-stratigraphic evolution described by regional stratigraphic correlations, facies maps and facies sections with explanatory text.

SECTION II: Hydrocarbon Distribution

Oil and gas distribution summarized in reservoir description, well test and estimated OHIP data bases with field structure maps and cross-sections.

SECTION III: Hydrocarbon Environment

Key factors responsible for hydrocarbon distribution described by oil family analysis, source rock distribution maps, 1D basin modelling, integrated 3D basin models and generative areas with explanatory notes.

SECTION IV: Petroleum Systems Analysis

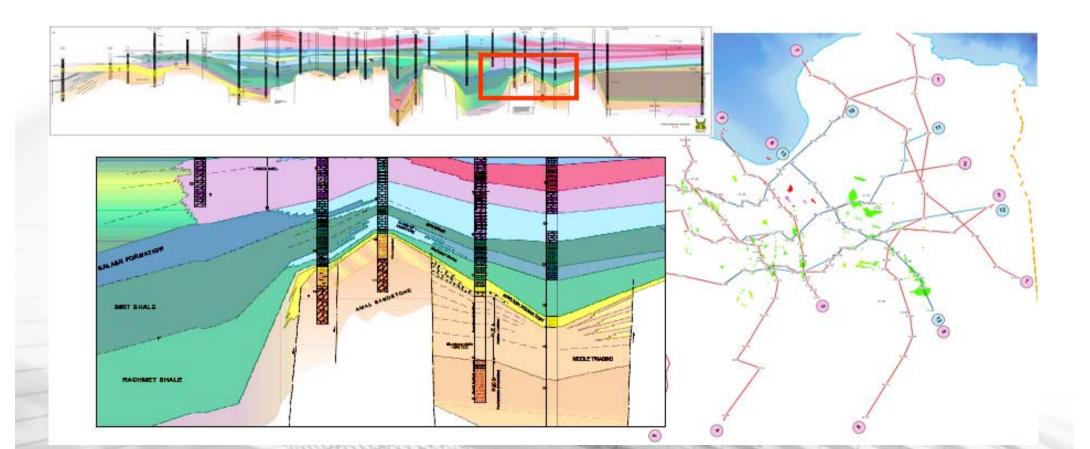
ArcGIS based petroleum systems analysis capability ~ enabling interactive synthesis of selected reservoir or stratigraphic horizon and associated oil and gas occurrences with regional (reservoir) facies, reservoir descriptions, oil family distribution, generative areas, expulsion timing and migration models for key source intervals.

Underlying Database

The study draws upon an extensive inventory of interpreted maps, well & seismic data and a number of previous studies undertaken by Lynx, augmented by an exhaustive review of published work. Key data items utilized include the following:

□ Wells database – 8,500 well locations, with formation tops for 3,000+ wells in the Sirt Basin

□ Comprehensive set of georectified and digitised geology maps (IRC 1:1M & 1:250K scale)


□ Regional gravity and magnetic (potential field) data

	Basin-w	vide dig	gita	l se	eismic	and	wireline l	og cove	rage	×	* * *	**	**	\mathbf{A}	$\overline{\ }$	÷ '		*	*	
						total		an.	*	*	- 10		Ż	ALC: NO	\$.	* *	× °	\$ X	<u>م</u>	Mara
ributes of Wells											- <u> </u>	\$	*38	Van	1.0	-	0	÷	202.4	Ciare
BJECTID * Shape *	UWI * WELL_NM		WD_FT	ELEV_FT	REF_DEPTH_FT	ELEV_REF	RESULT	WELL_STATUS	TD_MD_FT	TD_TVDSS_F	ा 🖬 🎺	2	1.7	A	71	***	¢	÷ .	· · ·	Grab
4850 Point	1001397 A-1-33	OASIS	0	280			Y	P&A	10768	(0 -	SA.	茶山	-XXX	at >		÷	A 0		
1657 Point	1001150 A-13-32	OASIS	0	1077				Completed	3900	(0	÷ C.	*		1	~ *	· . +		4	18 × 1
6252 Point	2002197 A-133-59	WAHA	0	538) oi	•	Completed	6700		0	3		1	*	40.	\$	Ŷ 🌲	A 3	*
1211 Point	1001400 A-1-34	BP	0	564			·	P&A	3496	(0	o *		* *	AU\$	2.27	* <	à 🗳 👘 📜	
6305 Point	2002250 A-134-59	WAHA	0	454) oi	•	Completed	6611			N	3	13 2		\$	W.	Y	* * *	2 4
125 Point 8066 Point	1001405 A-1-35 2003926 A-1-35/3	BP	2284	558	594		'Y /drocarbon shows	P&A P&A	11824	(1		414	1	1	- P		~ x	1 PA
3398 Point	1001808 A-13-59	OASIS	2204	496	511		urocarbon shows	Completed	6626			ŝ	÷ •	State L	0	*	200		4 48	20 44 04
3330 - 0112	1001000 A-13-33	0,010		430	511		1	Completed	0020		<u> </u>	5		6	00	an al	**	¢, 🕈 🖠	1 40 A	¢≩ •
												1 P	2	20	1. 3	** *	***	¢ ⁹ 🔏	· .	1998 N
Record: I		All Selected Re	ecords (0 ou	ut of 8474 S	Selected) (Options 👻					¢`	-	σ s	A State	0.00	5 a 1	4 4	3.4 4		800
Attributes of	Formation_tops										× 🚽	- 22	. 4	2 Y 3	000	ଦ୍ରୁ ଚ	10 0/	0 44	- 44 (A	4 - Xa
OBJECTID *	FORMATION	AGE	VD	EPTH V	DEPTHSS	TOPS	TD	UWI * WELL_NAM	IE Lat_pt	Lon_pt	1 5	-		1	* **	\$ 40	10	1	\$*	-
E	1 BIR GAZEIL SS			1370	382 BIR GA	AZEIL SS		1000000 A-1-1	26.68444	10.42028 -	- 3	2. 1.	10	a.	000		~ ×	9.00		÷
	2 TANEZZUFT SH.			1430	322 TANEZ	ZUFT SH		1000000 A-1-1	26.68444	10.42028	-8	3.		÷ •	¥. • · .		0	A BAR	\$ 4 , \$	·
	3	SILURIAN		1430	322 SILURI	AN		1000000 A-1-1	26.68444	10.42028	A	2	- R	1			1 /4	\$ 6	• •	10 200
	4	SILURIAN LOWER		1430	322 SILURI	AN LWR		1000000 A-1-1	26.68444	10.42028	F	• • •	\$ •	. 4		Ŷ	0,3254	44 4	**	
	5	ORDOVICIAN UPPER		1850	-98 ORDO	VICIAN UPP		1000000 A-1-1	26.68444	10.42028		2		¢ 🔶 🧯	$\diamond \diamond$		5 7 d	4/ 1		4
	6	ORDOVICIAN		1850	-98 ORDO	VICIAN		1000000 A-1-1	26.68444	10.42028	- A	1 2 3	÷. /	1		\$	A	1 %	¥	a de
	7 METAMORPHICS			3370	-1618 METAN	NORPHICS		1000000 A-1-1	26.68444	10.42028	8	2.5 0		4	× X &		8 8	\$**	- 49 V 5	And and Annual Annual
	8			3491	-1739 TD		TOTAL VERT DEPTH (DRIL)	1000000 A-1-1	26.68444	10.42028		*	360	0 0	10	6 A	* 11	Ŷ		
	9	CARBONIFEROUS LC	OWER	474	1189 CARBO	ONIFEROUS LWF	2	1000001 B-1-1	27.24778	10.54806		-	\$	\$ T	-	Ý			\$ \$ \$ \$	0 50
1	0	MISSISSIPPIAN		474	1189 MISSIS	SIPPIAN		1000001 B-1-1	27.24778	10.54806	\$	1 Y A	•					d T	Y Y	
1	1 MRAR			474	1189 MRAR			1000001 B-1-1	27.24778	10.54806 🗣	1 0	Ý		~	1.	. 			*	\$ \$ 0°

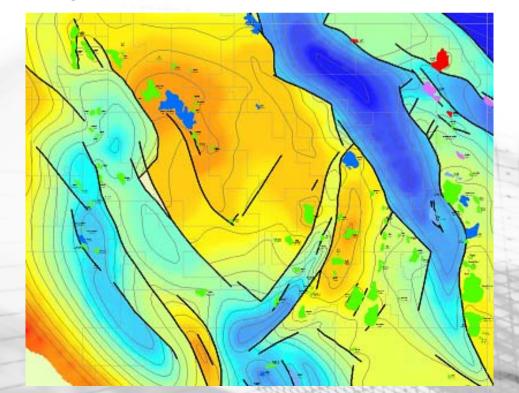
Section I Stratigraphic Cross-sections

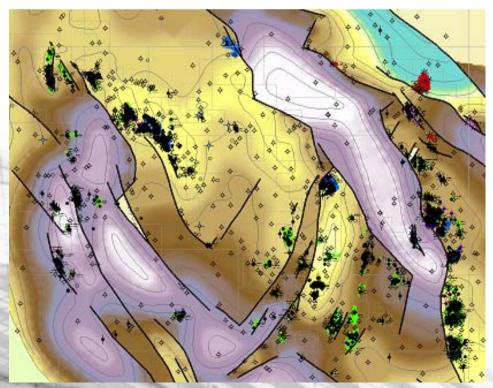
A series of regional E/W and N/S well correlation sections were created across the basin. Nine of these correlate lithologic section & formation picks ranging from early & pre-Mesozoic to early Tertiary (datumed on Top Paleocene), and a further four correlate Mid-Late Tertiary section datumed on Top Oligocene.

RT SHALF

Section I Lithofacies maps

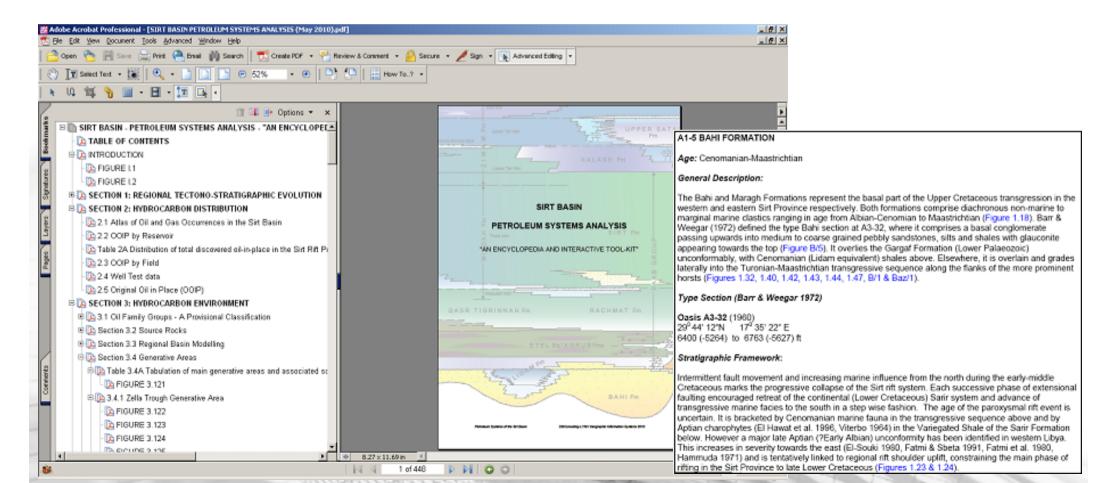
23 Paleogeographic lithofacies maps were composed which correspond geologically with the correlation sections, and these demonstrate changing depositional environment over the area from Early Mesozoic to Late Tertiary.


Triassic-Early Jurassic: distribution and lithofacies Late Jurassic-Early Cretaceous Lithofacies (Nubian Fm) Cenomanian Lithofacies (Lidam Formation & Equivalents) Turonian Lithofacies: Etel /Argub Formations & Equivalents) Coniacian-Santonian Lithofacies (Rachmet Formation & Equivalents) Campanian Lithofacies (Lower Sirt Shale & Equivalents) Sirt-Rachmet Net Organic Rich Shale Isopach Lower Maastrichtian Lithofacies (Waha & Equivalents) Upper Maastrichtian Lithofacies: Kalash & Equivalents) Lower Paleocene (Danian) Lithofacies: Upper Satal & Equivalents) Middle Paleocene (basal Montian) Lithofacies (Lower Beda & Equivalents) Middle Paleocene (Lower Montian) Lithofacies (Lower Beda & Equivalents) Middle Paleocene (Upper Montian) Lithofacies (Upper Beda & Equivalents) Upper Paleocene (Lower Thanetian) Lithofacies (Dahra & Equivalents) Upper Paleocene (Upper Thanetian) Lithofacies (Zelten & Equivalents) Lower Eocene (Early-Middle Ypresian) Lithofacies (Facha & Equivalents) Lower Eocene (Middle Ypresian) Lithofacies (Hon & Equivalents) Late Tertiary uplift-doming & unroofing Middle Eocene (Lutetian) Lithofacies (Gialo Formation) Mid-Late Oligocene Lithofacies, Najah Group (Arida, Diba Fms) **Miocene Lithofacies**

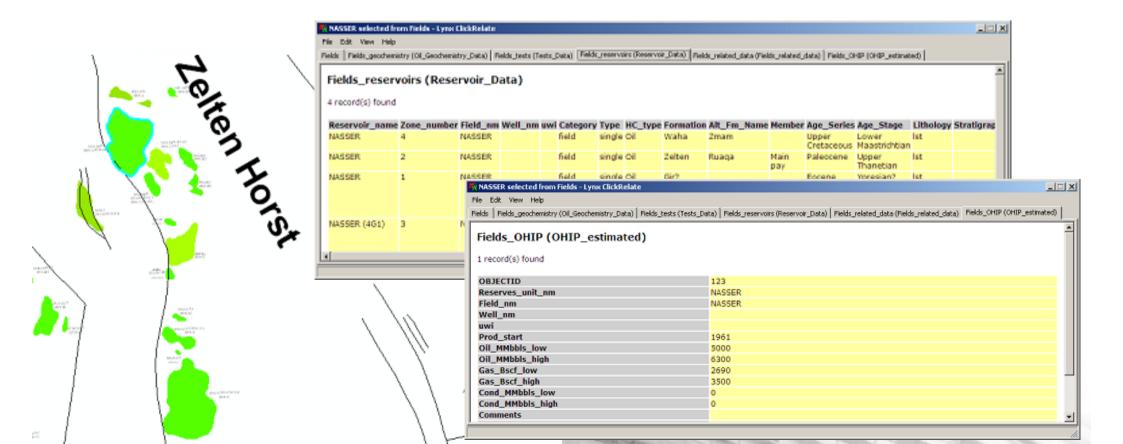

Section I Regional structure & isopach maps

A series of (8) regional top horizon surface maps were created, ranging from Top Nubian to Top Oligocene. Regional isopach maps (15) were then derived from these, with isopach intervals chosen to show increasing sediment loading over time on four of the key source intervals (Top Nubian, Top Etel/Base Rachmat & Top Sirt Shale)

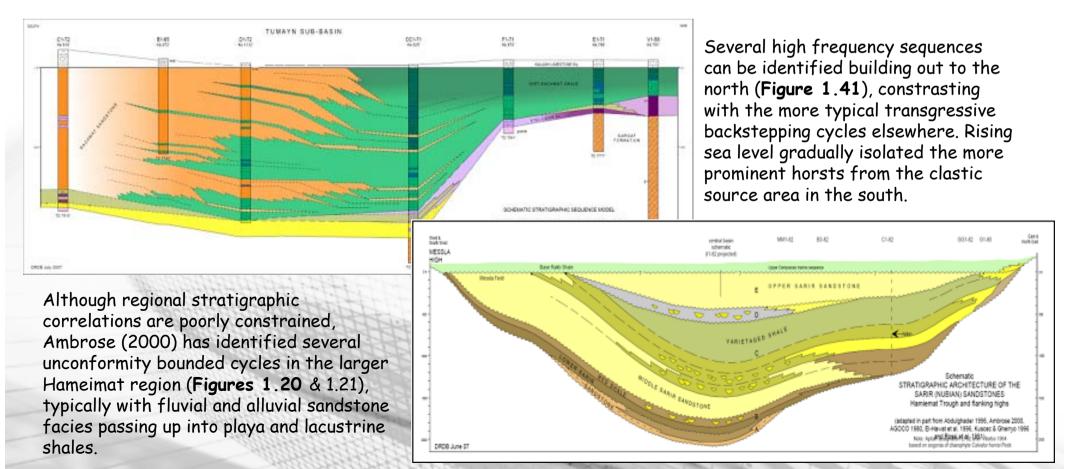
Top Nubian Structure


Top Sirt - Top Eocene Isopach

Section I Report text

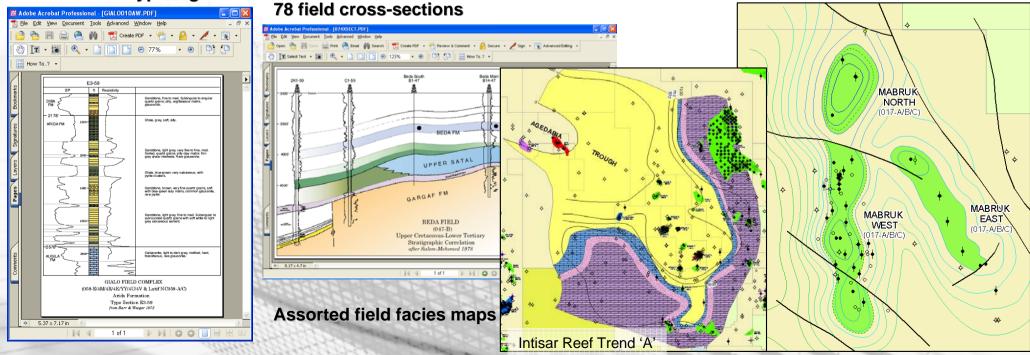

This material was used to support a 450-page written tectono-stratigraphic summary of the Province, with an appendix updating the classic Barr & Weegar (1972) treatise with detailed descriptions of each significant lithostratigraphic unit.

Section II Hydrocarbon Distribution


An systematic effort was undertaken to tabulate oilfield data describing stratigraphy, reservoir character and estimated reserves for all significant hydrocarbon discoveries, corroborated and normalised from multiple (and often conflicting c.f. reserves) sources.

Section I Report diagrams

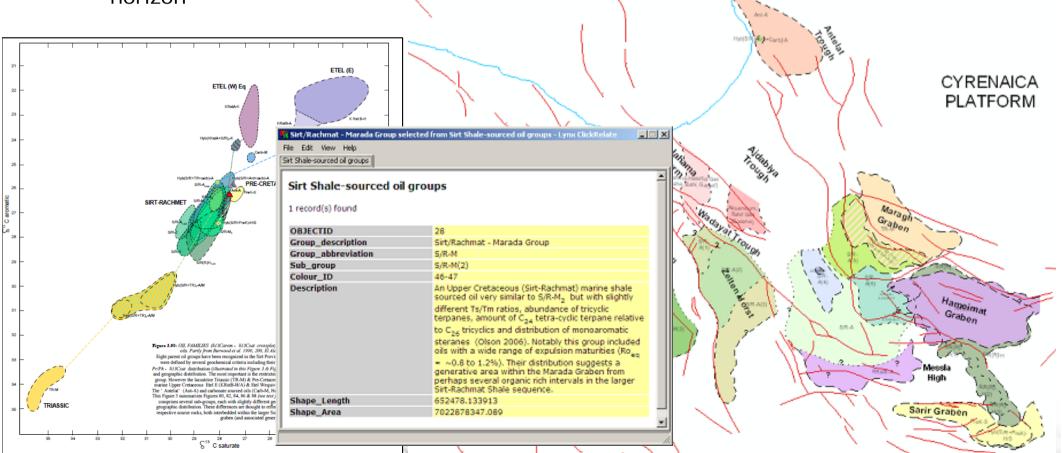
A library of selected & redrafted illustrations together with descriptive captions was constructed to show the regional tectonic framework, key tectonic drivers and stratigraphic architecture of the more significant 2nd/3rd order sequences of the basin fill.



Section II Field Analogue data

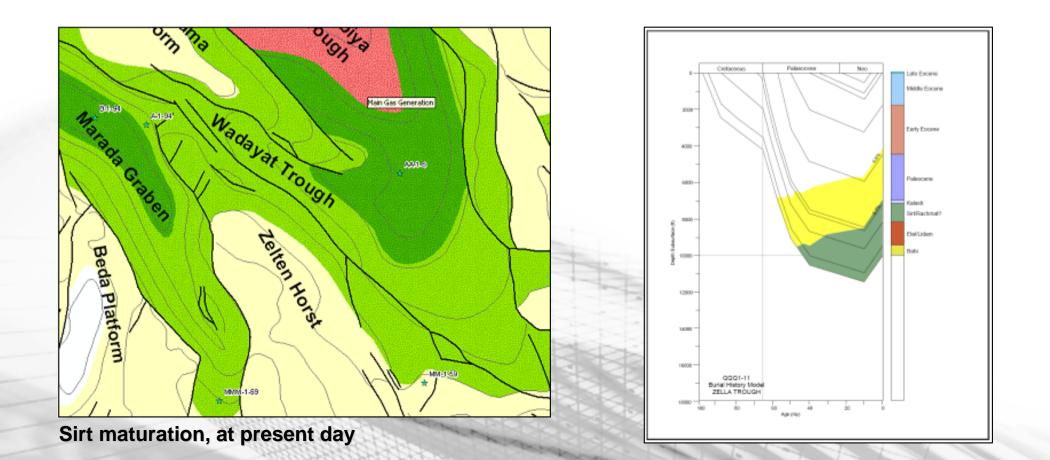
Part of this effort involved the gathering and synthesizing of 200+ published field maps, cross-sections, seismic examples and type-wells from open file published field data.

43 wells with type-logs

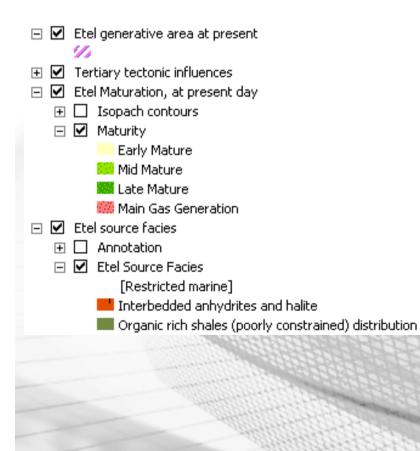


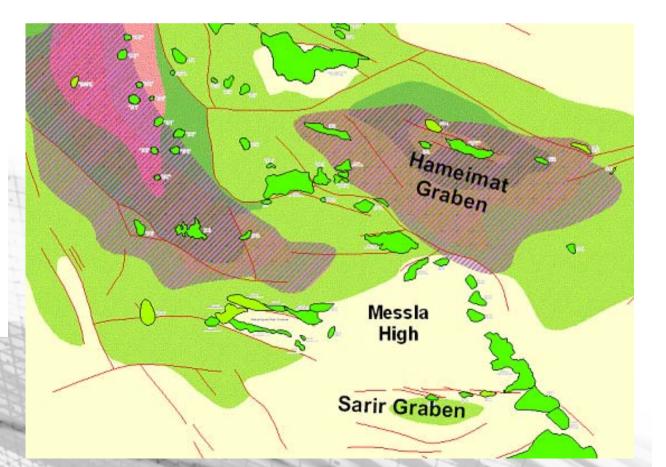
237 field map layers

Section III Hydrocarbon Environment – Oil Geochemistry


An analysis of over 150 broadly distributed oil samples from across the Province, used to identify and map a number of discrete oil families. These were defined by their Δ 13C and Pr/Py character and described using cross plots and maps with supporting text and tabulation listing the family (group) of each oil by stratigraphic horizon

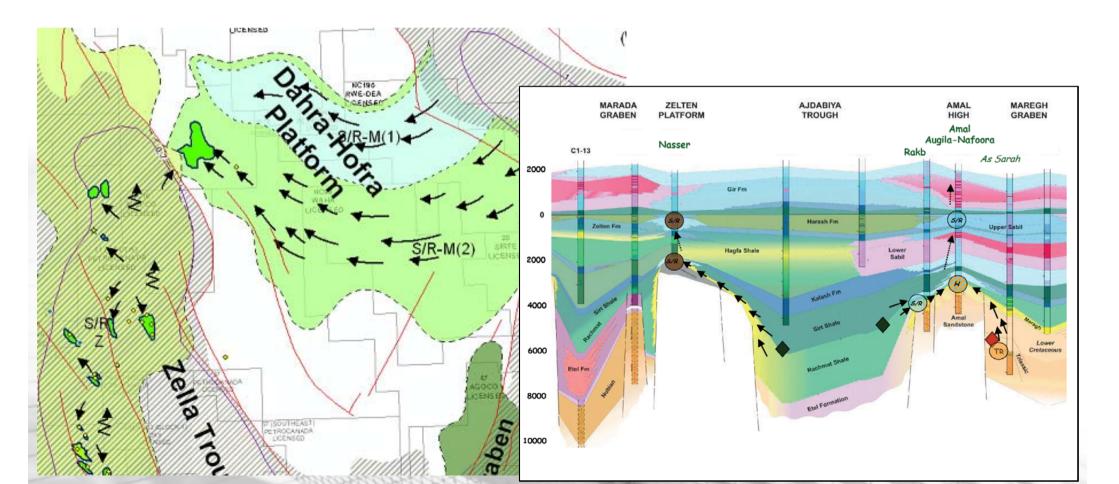
Section III Source Horizon maturation maps


The Interval isopach maps prepared for each key source horizon in Section I, were converted into regional maturation maps, constrained by 1D basin models obtained for 10 wells spread across the basin.



Section III Source kitchens/Generative areas

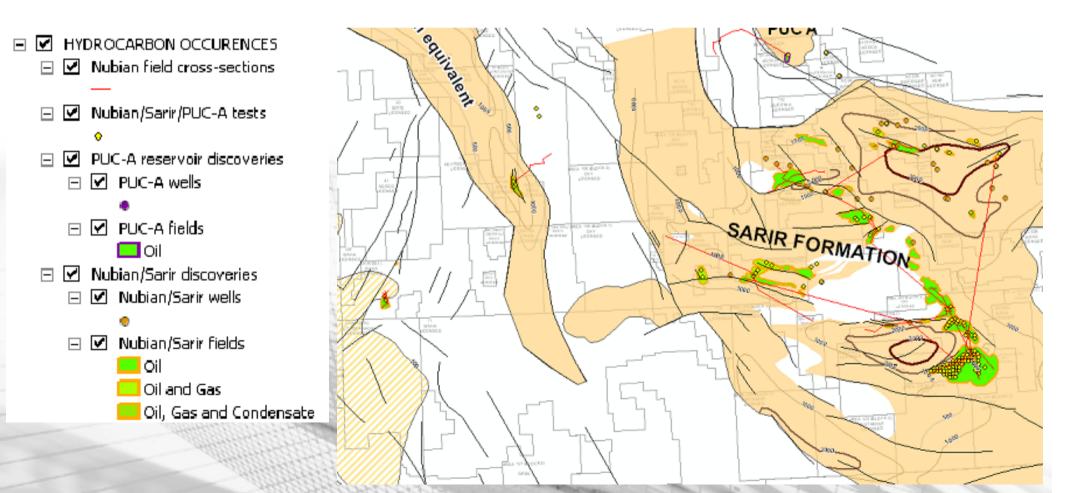
These basin history reconstuctions were then integrated with source rock distribution maps to create generative area maps of each recognized source horizon through time.



Section III Oil migration & charge models

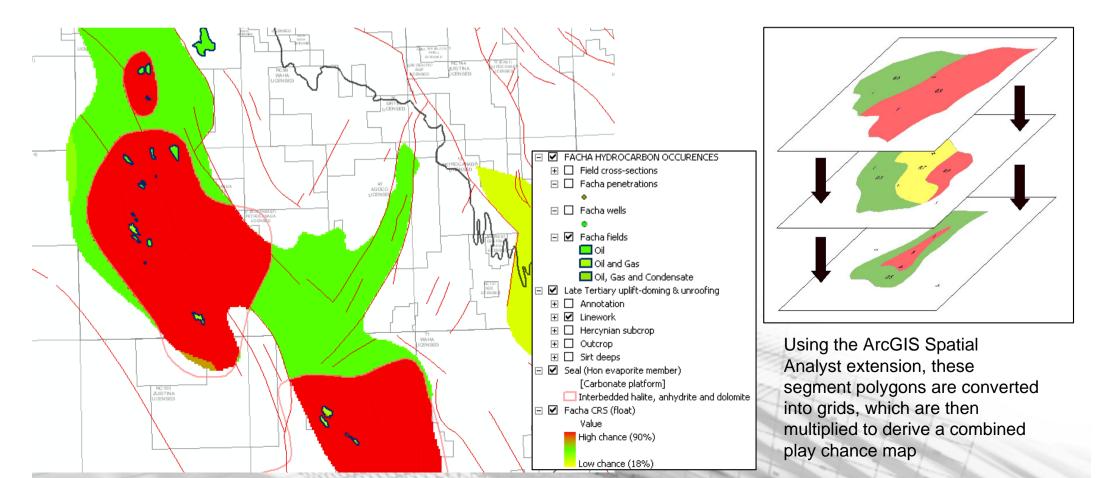
Charge models in both section and plan view were constructed by overlaying field pool locations, source generative areas and the oil family maps, allowing migration pathways to be drawn for each contributive source rock through time.

Section IV ArcGIS integration


Section IV is essentially a logical workflow describing how map layers, sections, tabular data and supporting text can be selected and assimilated in ArcMap for a chosen petroleum system, enabling play fairway maps to be constructed

RESERVOIR	AGE	LITHOLOGY	SEAL	
Palaeozoic/Basement	pre-Hercynian	clastic/igneous	Etel/Rachmat/Sirt	📮 🛅 Spatial layers
Nubian	Late Jurassic-Lower Cretaceous	clastic	Etel/Rachmat	End Field Facies Maps
Lidam/Bahi	Cenomanian	carbonate/clastic	Sirt/Rachmat	🖅 💼 Field Isopach Maps
Etel/Agrub/Bahi	Turonian	carbonate/clastic	Sirt/Rachmat	Field Miscellaneous Maps
Tagrifet/Bahi	Santonian- Campanian	carbonate/clastic	Sirt	 End Porosity Maps End Structure Maps
Waha/Samah/Bahi	Maastrichtian	carbonate/clastic	Kalash/ Hagfa	⊕ ⊕ Regional generative areas & migration mod ⊕
Upper Satal/Defa	Danian	carbonate	Rabia /Thalith	·
Beda	Montian	carbonate	Rabia/Khalifa/Upper Beda	
Dahra	Thanetian	carbonate	Khalifa	🗄 💼 Regional maturity maps
Zelten/Upper Sabil	Thanetian	carbonate	(Harash)/Kheir	
Facha	Lower Eocene	carbonate	Hon	E → B Regional structure maps
Gialo	Middle Eocene	carbonate		🗈 🗂 Libya.mdb
Diba/Arida	Oligocene	clastic		🕒 💼 🗂 Sirt_Petroleum_Systems.mdb

Section IV Play Summary maps in ArcGIS


The ArcGIS framework allows users to develop their own ideas by allowing easy incorporation of in-house company data, and ultimately provides a means for users to export maps and tables for presentations and shared discussion.

Section IV Common Risk Segment mapping in ArcGIS

This module forms an interactive toolkit for reasonably experienced ArcGIS users to create combined risk segment maps, a popular method for assessing play risk and chance potential.

